首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47258篇
  免费   4072篇
  国内免费   6866篇
化学   35153篇
晶体学   585篇
力学   1559篇
综合类   773篇
数学   7059篇
物理学   13067篇
  2023年   548篇
  2022年   844篇
  2021年   1812篇
  2020年   1517篇
  2019年   1383篇
  2018年   1108篇
  2017年   1253篇
  2016年   1622篇
  2015年   1609篇
  2014年   2076篇
  2013年   3536篇
  2012年   2532篇
  2011年   2793篇
  2010年   2581篇
  2009年   3042篇
  2008年   3199篇
  2007年   3403篇
  2006年   2780篇
  2005年   1919篇
  2004年   1808篇
  2003年   1760篇
  2002年   1468篇
  2001年   1394篇
  2000年   1102篇
  1999年   837篇
  1998年   811篇
  1997年   674篇
  1996年   707篇
  1995年   649篇
  1994年   655篇
  1993年   625篇
  1992年   623篇
  1991年   401篇
  1990年   342篇
  1989年   267篇
  1988年   288篇
  1987年   238篇
  1986年   218篇
  1985年   345篇
  1984年   256篇
  1983年   156篇
  1982年   303篇
  1981年   476篇
  1980年   430篇
  1979年   471篇
  1978年   369篇
  1977年   280篇
  1976年   238篇
  1974年   75篇
  1973年   156篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
In order to gain new insights into the effect of the π–π stacking interaction of the indole ring with the CuII–phenoxyl radical as seen in the active form of galactose oxidase, we have prepared a CuII complex of a methoxy-substituted salen-type ligand, containing a pendent indole ring on the dinitrogen chelate backbone, and characterized its one-electron-oxidized forms. The X-ray crystal structures of the oxidized CuII complex exhibited the π–π stacking interaction of the indole ring mainly with one of the two phenolate moieties. The phenolate moiety in close contact with the indole moiety showed the characteristic phenoxyl radical structural features, indicating that the indole ring favors the π–π stacking interaction with the phenoxyl radical. The UV/Vis/NIR spectra of the oxidized CuII complex with the pendent indole ring was significantly different from those of the complex without the side-chain indole ring, and the absorption and CD spectra exhibited a solvent dependence, which is in line with the phenoxyl radical–indole stacking interaction in solution. The other physicochemical results and theoretical calculations strongly support that the indole ring, as an electron donor, stabilizes the phenoxyl radical by the π–π stacking interaction.  相似文献   
992.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
993.
This work proposes a novel method for the direct flow injection profiling of acylglycerols in edible oils and fats without preliminary extraction and consequent reconstitution in the injection solvent. The work exploits the outstanding performance of high‐resolution mass spectrometry to target unique elemental compositions even in the most complex matrices. The performance of isopropanol as the unique solvent for both the solubilization and analysis of acylglycerols was investigated in comparison with other classical methods involving preliminary extractions, sample recovery, and analysis. The calibrations of two triglyceride standards (triolein and trilinolenin) were successfully performed in presence and absence of oil matrix. As final application, the effects on the acylglycerol fraction of a heat treatment on three different fat samples (extra virgin olive oil, lard oil, and fat from dry cured ham—speck) were monitored. The proposed method is therefore suitable for a rapid evaluation of acylglycerol fractions in food lipid samples.  相似文献   
994.
《Current Applied Physics》2019,19(11):1177-1181
We investigated the visible emission property of SrTiO3 (STO) single crystals with high temperature annealing in some ambient conditions. We found that the green emission in STO, which should be associated with intermediate states originating from functional ionic defects inside the samples, such as cation/oxygen vacancies, showed strong ambient dependence. While high temperature annealing in the O2 atmosphere suppressed the intensity of visible emission, annealing in an O2-free atmosphere, such as N2 or H2, increased it. The broad visible emissions were fitted with three sub-modes, whose intensities showed different evolutions with respect to the ambient condition. Our study demonstrated the systematic development of defect states with the amount of the oxygen vacancies in STO.  相似文献   
995.
996.
蔡泽民  毕勤胜 《力学季刊》2019,40(3):478-487
当周期激励频率远小于系统固有频率时,会存在快慢耦合效应,与单项激励不同,参外联合激励不仅会导致快子系统平衡曲线和分岔行为的复杂化,也会产生一些特殊的非线性现象,为此,本文以两耦合Hodgkin-Huxley细胞模型为例,引入周期参外联合激励,探讨在频域不同尺度耦合时该系统的簇发振荡的特点及其分岔机制.通过建立相应的快慢子系统,得到慢变参数变化下的快子系统的各种分岔模式以及相应的分岔行为,结合转换相图,揭示耦合系统随激励幅值变化时的动力学行为及其机理.研究表明,在激励幅值较小时,系统表现为概周期振荡,两频率分别近似于快子系统平衡曲线由Hopf分岔引起的两稳定极限环的振荡频率.概周期解随激励幅值的增加进入簇发振荡,导致这些簇发振荡的主要原因是在慢变参数变化的部分区间内,存在唯一稳定的平衡曲线,使得系统的轨迹逐渐趋向该平衡曲线,产生沉寂态,并随着慢变参数的变化,由分岔进入激发态.同时,快子系统中参与簇发振荡的稳定吸引子随激励幅值的变化也会不同,导致不同形式的簇发振荡.另外,与单项激励下的情形不同,联合激励时快子系统的部分稳定吸引子掩埋在其它稳定吸引子内,从而失去对簇发振荡的影响.  相似文献   
997.
998.
Oxidation of methyl ethyl sulfide (CH3SCH2CH3, methylthioethane, MES) under atmospheric and combustion conditions is initiated by hydroxyl radicals, MES radicals, generated after loss of a H atom via OH abstraction, will further react with O2 to form chemically activated and stabilized peroxyl radical adducts. The kinetics of the chemically activated reaction between the CH3SCH2CH2• radical and molecular oxygen are analyzed using quantum Rice-Ramsperger-Kassel theory for k(E) with master equation analysis and a modified strong-collision approach to account for further reactions and collisional deactivation. Thermodynamic properties of reactants, products, and transition states are determined by the B3LYP/6-31+G(2d,p), M062X/6-311+G(2d,p), ωB97XD/6-311+G(2d,p) density functional theory, and CBS-QB3, G3MP2B3, and G4 composite methods. The reaction of CH3SCH2CH2• with O2 forms an energized peroxy adduct CH3SCH2CH2OO• with a calculated well depth of 34.1 kcal mol−1 at the CBS-QB3 level of theory. Thermochemical properties of reactants, transition states, and products obtained under CBS-QB3 level are used for calculation of kinetic parameters. Reaction enthalpies are compared between the methods. The temperature and pressure-dependent rate coefficients for both the chemically activated reactions of the energized adduct and the thermally activated reactions of the stabilized adducts are presented. Stabilization and isomerization of the CH3SCH2CH2OO• adduct are important under high pressure and low temperature. At higher temperatures and atmospheric pressure, the chemically activated peroxy adduct reacts to new products before stabilization. Addition of the peroxyl oxygen radical to the sulfur atom followed by sulfur-oxygen double bond formation and elimination of the methyl radical to form S(= O)CCO• + CH3 (branching) is a potentially important new pathway for other alkyl-sulfide peroxy radical systems under thermal or combustion conditions.  相似文献   
999.
Long sought after [4+2] cyclases have sprouted up in numerous biosynthetic pathways in recent years, raising hopes for biocatalytic solutions to cycloaddition catalysis, an important problem in chemical synthesis. In a few cases, detailed pictures of the inner workings of these catalysts have emerged, but intense efforts to gain deeper understanding are underway by means of crystallography and computational modelling. This Minireview aims to shed light on the catalytic strategies that this highly diverse family of enzymes employs to accelerate and direct the course of [4+2] cycloadditions with reference to small-molecule catalysts and designer enzymes. These catalytic strategies include oxidative or reductive triggers and lid-like movements of enzyme domains. A precise understanding of natural cycloaddition catalysts will be instrumental for customizing them for various synthetic applications.  相似文献   
1000.
While numerous organo(metallic)catalyst systems were documented for dearomative hydroboration of N-aromatics, alkoxide base catalysts have not been disclosed thus far. Described herein is the first example of alkoxide-catalyzed hydroboration of N-heteroaromatics including pyridines, providing a broad range of reduced N-heterocycles with high efficiency and selectivity. Mechanistic studies revealed an unprecedented counterintuitive dearomatization pathway, in which 1) pyridine-BH3 adducts undergo a hydride attack by alkoxyborohydrides, 2) in situ generated BH3 serves as a catalytic promoter, and 3) 1,4-dihydropyridyl borohydride is in a predominant resting state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号